Feedstock derived from natural gas often contains sulfur compounds such as hydrogen sulfide (H2S), sulfur dioxide (SO2), carbon disulfide (CS2), mercaptans, and thiophenes if not subjected to thorough desulfurization treatment. In methane steam reforming, H2S emerges as the primary sulfur compound, with different sulfur compounds causing catalyst poisoning via distinct pathways. Throughout the reforming process, the generation of high-temperature water vapor or hydrogen prompts the conversion of most sulfur compounds to H2S, which subsequently adsorbs onto active sites, resulting in catalyst poisoning. Thus, H2S stands as the main culprit, triggering deactivation mechanisms like sulfidation of active components and accelerated carbon deposition.
Methods for Mitigating Sulfur Poisoning in Methane Steam Reforming Catalysts
Catalyst Carrier and Other Approaches:
Discover Customized Solutions with SYAMCAT